analiza korelacji

Odpowiednie analizy statystyczne są dostępne do różnych zastosowań i do stwierdzania różnych zależności. Jedną ze znanych i często używanych analiz jest korelacja. Do przeprowadzenia tej analizy potrzebne są zmienne, a badana będzie zależność między nimi – czy w ogóle istnieje, w jakim jest kierunku itd. Chodzi oczywiście o zależność liniową. W przypadku korelacji można określić zależność liniową o wartości w zakresie od -1 do +1. Za pomocą oznaczeń oraz liczb można określić, jaką wartość przyjmują analizy statystyczne i w jakim kierunku występuje istniejąca zależność. Analiza statystyczna nazywana korelacją używana jest w różnych odmianach, na przykład jako współczynnik korelacji Spearmana, współczynnik korelacji Tau Kendalla czy też współczynnik korelacji r Pearsona. Trzeba odpowiednio rozłożyć zmienne oraz użyć właściwej skali, dzięki czemu wyniki mogą być prawidłowe i wiele mówiące. Wybór odnośnie tego, jakie analizy statystyczne zostaną wykorzystane, można uzależnić od rodzaju zmiennych. Na przykład zmienne wyrażone dzięki skali ilościowej oraz posiadające normalny rozkład można analizować za pomocą współczynnika korelacji r Pearsona. W przypadku, gdy zmienne nie znajdują się w rozkładzie normalnym (choćby jedna z nich), należy użyć korelacji Spearmana. Ostatni z omówionych współczynników, współczynnik Tau Kendalla, przydatny jest w przypadku skali porządkowych oraz znajdujących się na nich zmiennych.

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wypełnienie jest wymagane, są oznaczone symbolem *