Tag Archive for korelacja Spearmana

Kurs spss – korelacja Spearmana

Kiedy wykorzystujemy Współczynnik korelacji rang Spearmana ?

Współczynnik korelacji rang Spearmana pozwala sprawdzić czy pomiędzy dwiema zmiennymi istnieje związek (współzależność). Korelacja Spearmana należy do grupy testów nieparametrycznych, jej parametrycznym odpowiednikiem jest korelacja Pearsona. stosujemy ją najczęściej wtedy gdy nasze zmienne nie spełniają założeń testów parametrycznych takich jak normalność rozkładu oraz ilościowy charakter testowanych zmiennych.

testy nieparametryczne

Testy nieparametryczne to zbiór analiz statystycznych, które stosujemy m.in. wtedy gdy nasze zmienne nie spełniają założeń testów parametrycznych. Analizując zastosowanie poszczególnych testów nieparametrycznych łatwo możemy stwierdzić, iż niektóre z nich mają swe odpowiedniki w grupie testów parametrycznych. Do testów nieparametrycznych zaliczamy m.in. statystyki takie jak test U Manna Whitneya, Test Kruskala Wallisa, Test Wilcoxona, Korelacja Tau Kendalla, Korelacja Spearmana. Oczywiście to nie wszystkie testy nieparametryczne, ale w niniejszym artykule skupimy się właśnie na nich.

Test U Manna Whitneya to analiza statystyczna, która jest nieparametrycznym odpowiednikiem testu t studenta dla prób niezależnych. Test U Manna Whitneya wykorzystywany jest do porównywania dwóch prób niezależnych. Warto również zaznaczyć, że opisywana statystyka opiera się na porównywaniu rangowym (w przypadku testu t Studenta porównujemy średnie).

Test Kruskala Wallisa to analiza statystyczna, której parametrycznym odpowiednikiem jest jednoczynnikowa analiza wariancji (ANOVA). Test Kruskala Wallisa służy do porównywania wielu prób. Warto jednak dodać, że minusem opisywanej statystyki jest niemożność zidentyfikowania pomiędzy, którymi z grup występują istotne różnice (w przypadku ANOVY możemy tego dokonać przeprowadzając dodatkowo testy post hoc lub analizę kontrastów).

Test Wilcoxona to analiza statystyczna, która pozwala nam porównać ze sobą dwie próby zależne. Testem parametrycznym, który jest odpowiednikiem opisywanej statystyki jest test t studenta dla prób zależnych. Tak jak w przypadku pozostałych testów nieparametrycznych tak i w tym aparat obliczeniowy oparty jest na porównaniu rang.

Korelacja Tau Kendalla to analiza statystyczna dla zmiennych porządkowych lub rangowanych. Jej aparat obliczeniowy również opiera się na powiązaniach rang. Korelacja Tau Kendalla może przyjmować wartości od -1 do 1, interpretacja opisywanej analizy statystycznej jest więc taka sama jak chociażby w przypadku korelacji Pearsona czy Spearmana.

Korelacja Spearmana to nieparametryczny odpowiednik współczynnika korelacji Pearsona. Stosujemy go zazwyczaj wtedy gdy nasze zmienne nie spełniają założeń przeznaczonych dla testów nieparametrycznych. Warto dodać, że i ta analiza statystyczna opiera się na rangach.

Podsumowując powyżej opisane testy nieparametryczne mają swoje odpowiedniki wśród testów parametrycznych.

 

 

Analizy statystyczne – korelacja

Planując przeprowadzenie analiz statystycznych tak naprawdę mamy do wyboru dwie drogi. Pierwsza z nich to grupa analiz statystycznych opartych na korelacjach a więc testach badających związek pomiędzy dwoma bądź większa liczbą zmiennych. Druga droga służy do weryfikacji hipotez dotyczących różnic pomiędzy grupami bądź pomiarami prowadzonymi w różnym czasie. W poniższym artykule skupimy się jednak na analizach statystycznych opartych na metodach korelacyjnych.

Obliczenia statystyczne z wykorzystaniem analiz korelacyjnych to grupa testów pozwalająca zbadać czy pomiędzy testowanymi zmiennymi występują istotne zależności. Należy jednak pamiętać, że testy oparte na korelacjach nie pozwalają na wyciąganie wniosków przyczynowo skutkowych tzn. nie możemy stwierdzić, która ze zmiennych pełni rolę zmiennej wyjaśniającej a która wyjaśnianej. Jedyne co w przypadku analiz statystycznych opartych na korelacjach możemy stwierdzić z całą pewnością to fakt wystąpienia związku pomiędzy zmiennymi.

Najpopularniejsze testy oparte na korelacjach pozwalające zbadać zależność pomiędzy dwiema zmiennymi to współczynnik korelacji r Pearsona, współczynnik korelacji Rho Spearmana oraz współczynnik korelacji Tau Kendalla. Oczywiście każdy z tych testów stosowany jest w pewnych warunkach, dlatego też poniżej znajduje się krótka charakterystyka każdego z wyżej wymienionych testów.

Korelacja r Pearsona – obliczenia statystyczne z wykorzystaniem tegoż testu możemy przeprowadzić jedynie w przypadku gdy nasze zmienne wyrażone są na skali ilościowej a ich rozkłady są bliskie rozkładowi normalnemu. Korelacja r Pearsona pozwala zbadać związek liniowy pomiędzy dwiema zmiennymi.

Korelacja Rho Spearmana – obliczenia statystyczne z wykorzystaniem tej statystyki przeprowadzamy zazwyczaj wtedy gdy przynajmniej jedna z naszych zmiennych wyrażonych na skali ilościowej nie spełnia założenia dotyczącego normalności rozkładu. Warto również zaznaczyć, że analizy statystyczne z wykorzystaniem testu Rho Spearmana opiera się na analiza rang, jednak jej wynik odczytuje się w identyczny sposób jak korelacje r Pearsona.

Korelacja Tau Kendalla – obliczenia statystyczne z wykorzystaniem tego testu stosujemy wtedy gdy nasze zmienne (bądź przynajmniej jedna z nich) jest wyrażona na skali porządkowej. Należy również zaznaczyć, że opiera się na analizie rang – tak jak to jest w przypadku korelacji Rho Spearmana.

PODOBNE ARTYKUŁY:

Interpretacja wyników korelacji

Korelacja Spearmana

Korelacja Pearsona

Korelacja Tau Kendalla

Korelacja Spearmana

Jest to analiza statystyczna, która pozwala zmierzyć zależności między dwiema zmiennymi. Analiza ta nazywana jest też korelacją rangową, gdyż cały aparat obliczeniowy opiera się właśnie na nich. Korelacja Spearmana należy do grupy testów nieparametrycznych a wykorzystujemy ją zazwyczaj w przypadku gdy obie zmienne (bądź tylko jedna z nich) w naszej analizie statystycznej nie posiadają rozkładu normalnego.

PODOBNE ARTYKUŁY:

Analizy statystyczne – interpretacja wyników korelacji

Analizy statystyczne – korelacja

Na czym polega analiza korelacji ?

Kurs spss – korelacja Spearmana

Kurs spss – korelacja Pearsona